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Three properties of the infinite cluster in percolation theory 
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Maharishi European Research University, CH-6446 Seelisberg, Switzerland 

Received 3 January 1978 

Abstract. We present proofs of the following properties of the infinite cluster in percola- 
tion theory for all p > pc  and for all lattices. 

(i) The ratio of the number of boundary sites to cluster sites is (1 - p ) / p .  
(ii) The specific logarithmic multiplicity of the infinite cluster per cluster site is equal 

to the specific logarithmic multiplicity of all configurations of the lattice per 
occupied site, lnp + [(l - p ) / p ]  In(1 - p ) .  

(iii) The specific logarithmic multiplicity of the infinite cluster per cluster site is given 
by S(a )  = (1 + a )  In(1 + a ) -  a Ina for all a < ac. 

We derive a limiting form for the multiplicity of finite clusters for a <a,  and show that 
the simplest n-dependent term varies as n-”* where d is the dimensionality of the lattice. 
We also suggest that for a > a,, dS(a)/da s 0 and that S(a,) is the maximum value of S ( a )  
and that its first derivative is discontinuous at a = a,. 

In a recent paper Domb (1976) has investigated the statistics of lattice animals in 
relation to percolation theory, and introduced the ratio b/n = a  as a convenient 
parameter for their classification. Here n is the number of sites in the animal, and b 
the number of defining boundary sites. Domb focused particular attention on M(n, b)  
the number of clusters on a given lattice, and its limiting form as n +co for fixed a 
which we shall write as$ 

b / n = a  

Possibly the most interesting proposal to date about the value of S ( a )  is that of 
Leath (1976) who suggested that 

S ( a ) =  (1 + a )  ln(1 +a)-a In a. (2) 

The region of applicability of this relation has not been clarified and Domb (1976) has 
rightly pointed out that this function does not permit the derivation of a clear cut value 
a, for critical percolation, and thus not for p c  either. 

An important result obtained by Leath and Domb provides a simple relation 
between a, and p c  at critical percolation: 

t Now at Academy for SCI, Rt. 43, Hancock Road, Williamstown, Mass. 01267, USA. 
f Here we have used the symbol S(a)  rather than Domb’s In A(a) to emphasise the fact that this function is 
closely related to the specific entropy. 
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References to related literature on percolation can be found in the two papers quoted 
above. 

In this letter we shall show that equations similar to (2) and (3) may be obtained for 
all infinite clusters for p > p c  (and a < a,) and that they provide direct confirmation of 
equation (3) and of the way that equation (2) should be applied at percolation. 
Furthermore, they suggest directly a new approach to the solution of percolation 
problems on real finite-dimensional lattices. 

The three properties we shall prove for the infinite cluster are valid on all finite- 
dimensional lattices apparently even including those with defects. The first is also 
valid for pseudolattices; a discussion of the second and third for pseudolattices will be 
given in a subsequent publication giving a fuller version of the present work. 

They are as follows: 
(i) The ratio a of the number of boundary sites to the number of cluster sites for 

the infinite cluster is given by 

for all values of p > p c ,  and hence of a < a,. Thus the value of this ratio a decreases 
smoothly from the value zero at p = 1 to its value at criticality given by equation (3). 
Furthermore, since b = an all naturally occurring infinite clusters have a > 0 (except 
for the trivial case p = 1) and are ramified. 

(ii) The specific entropy per occupied site of the infinite cluster S(a)  is equal to 
the specific logarithmic multiplicity of all possible configurations for the whole lattice. 
The implications of this statement would appear to be that there is nothing otherwise 
special or selected about a site that is a member of the infinite cluster. The infinite 
cluster is egalitarian. 

(iii) The specific entropy of the infinite cluster S(a)  depends on the ratio a 
precisely according to equation (2). 

The third proposition is probably of greatest consequence, it can easily be obtained 
from (i) and (ii) by using equation (4) to substitute a for p in the expression for the 
specific logarithmic multiplicity of all lattice configurations. We shall later give a 
simpler analytic proof of these results, but we first give a more concrete discussion 
which provides greater insight into their significance. 

Proof of (i) 
Property (i) is very obviously true for p = 1. This is because in this limit all the 
unoccupied lattice sites become boundary sites for the infinite cluster, which similarly 
comprises all occupied sites. Hence it is obvious that equation (4) is true and (i) holds. 
We can extend this easily enough to cases where all sites that are not part of the 
infinite cluster form finite size enclosures within the infinite cluster, and the method of 
so doing will provide the insight to extend this to all p > p c .  

Any finite enclosure within the infinite cluster contains the following kinds of site: 
(a) defining boundary sites for the infinite cluster that are unoccupied or empty 

E b :  these may be assigned a probability 4(&) for occurrence over the entire 
lattice; 

(b) all other empty sites &--of probability 4(Eo); 
(c) all occupied sites that are full (other than those in the infinite cluster) Fo-of 

probability ~(Fo). 
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Together with infinite cluster sites Fc (of probability p(Fc)) these account for the 
entire lattice. We can therefore subdivide the probabilities p and 4( = 1 - p )  as: 

P = P (Fc) + P (Fo) 

4 = 4 ( E b )  + 4 (EO). 
(5a) 

(56) 

(Note that Eo sites may or may not be boundary sites of finite clusters; but they are not 
boundary sites of the infinite cluster.) 

We now regard the set of all enclosures of a given shape as providing a statistical 
enseinble of lattice sites and calculate the corrections to p(F,) and 4 ( E b ) .  On a square 
lattice the smallest such enclosure has one site that may be occupied or unoccupied, 
and four defining boundary sites: we may assign it a probability PI of being occupied 
given by : 

p1 =p( l  - P ) 4 f i ( P )  (6a 1 

Qi = q ( l - ~ ) ~ f i @ )  (66 ) 

and of being unoccupied 

where f l @ )  = p(FC)(pi5 + higher-order terms) ensures that the eight infinite cluster 
sites defining this enclosure are indeed connected. Setting ~ ( F o )  *PI and  EO) = QI 
as the smallest correction yields with equations (4a) and (46), 

This procedure may be repeated for any finite enclosure for which equations 
analogous to equations (6a) and (66) may be written. Once the enclosure has been 
defined and assigned a probability, the occupation of sites within the enclosure is 
random and the ratio of @(&) to p(F,) reduces to (1 - p ) / p  as in (7). 

To complete the proof of (i) for all lattices we must take into account the fact that 
the sites EO and Fo may themselves form infinite clusters. We can circumvent this 
possibility by using the stratagem of a cyclic boundary (as elsewhere in solid state 
physics). Instead of an ‘infinite cluster’ we use the concept of a ‘spanning cluster’. We 
are of course interested in the limit when the size of the torus becomes very large, but 
as long as it is finite, enclosures which are not part of the spanning cluster are finite, 
the argument of the previous section applies, and relation (7) is satisfied. 

Proof of (ii) 

The specific logarithmic multiplicity of all possible configurations on a lattice with site 
occupancy probability p may be calculated by finding that for a finite sample size of 
lattice N and letting N become infinite. For such a sample the number of possible 
configurations is given by N ! / ( N o !  Nu!)  where NO is the number of occupied sites and 
Nu the number of unoccupied sites. Taking logarithms, dividing by N, and using the 
fact that No =pN and Nu (1 - p ) N  exactly in tHe limit N + 00 yields 

s@) = p In p + (1 - p )  In (1 - p )  (8) 

where we denote the specific logarithmic multiplicity by s @ )  as it is equal to the 
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specific entropy in the non-interacting limit J /T  + 0 of the Ising model. The cor- 
responding quantity per occupied site is given by 

1 1-P S@) = -s@) = In p +- In(1 - p ) .  
P P 

(9) 

The number of configurations of the entire lattice C can be counted differently 
however: they are exactly equal to the number of possible configurations CO of sites 
EO and Fo summed over each possible configuration of the infinite cluster (sites Fc and 
E b ) .  However since these various kinds of site form fractions of the lattice q(Eo), 
~(Fo), etc, and because the most probable fractions dominate completely so that other 
possibilities may be neglected one can derive the multiplication rule in the limit of 
very large sample size N of the occupied lattice: 

c = coco0 (10) 

where C, is the number of configurations of the infinite cluster. Therefore we find 
that: 

But the 'other' sites Fo and Eo on the lattice are comprised of fractions p(Fo) and 
q(E0) with the ratio derived in the proof of (i). It then follows that the specific 
logarithmic multiplicity of configurations CO is given by equation (8) and that 

Now using the fact that 1 -p(Fo)-  EO) = p(F,)+ q(Eb) from equations (4a) and (46), 
equation (1 1) then yields: 

But the left-hand side of equation (13) is precisely the specific logarithmic multiplicity 
of all infinite clusters per occupied site and defining boundary site. Since 
p(Fc)/(p(F,)+q(&))=p as in the proof of (i), it follows that the specific logarithmic 
multiplicity of all infinite clusters per occupied cluster site is given by: 

But this is the same as equation (9) and property (ii) is proven. 

Property (iii) 

This follows very simply by substituting equation (4) in equation (14) yielding equa- 
tion (2). 

We now give a discussion of the significance of these results. 
Evidence for equation (4) has recently been obtained empirically? from Monte 

Carlo methods on a two-dimensional lattice by Stoll and Domb (1978). It would be 

t I am grateful to Professor Domb for bringing this to my attention. 
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most interesting to test this relationship on higher-dimensional lattices by similar 
met hods. 

Equation (4) has interesting applications to Ising models since for T > T,, (1 - p ) / p  
is strictly equal to e-Hs’kT where H is the magnetic field. In the non-interacting limit 
J / T + O  spin direction is strictly random and the entropy is given by equation (8) 
whilst equation (4) may be interpreted as giving the ratio a for the infinite cluster(s). 
For spins parallel to the field a = e-H’kT and for antiparallel spins a = e+H/kT: such 
infinite clusters cannot exist for a less than the percolation limit a,, giving limiting 
values to H: H, = kT In a,. If p , > $  then a,< 1 and at H = 0 neither infinite cluster 
exists. For lattices on which a,>l  a limited range of H allows coexisting infinite 
clusters of opposite spins. 

As Domb (1976) has pointed out, the behaviour at large n of M ( n ,  b )  for b / n  fixed 
is of great interest to percolation theory. Approximations to [In M(n,  b ) ] / n  may be 
simply derived from equation (2) since the infinite cluster has a well defined density of 
sites p(F,) and a well defined value of a to which hypercubes (or other suitable 
hypervolumes) of lattice will approximate arbitrarily closely if of large enough size. 
Let us divide the partially filled lattice into hypercubes of a given size; such a set of 
hypercubes will contain a sufficient multiplicity of cluster shapes C to yield equation 
(2) when these are summed over the entire lattice. If we assume a dominance of the 
mean values E and 6 we automatically find that the multiplicity M,(A, 6) of hypercubes 
containing A infinite cluster sites and 6 defining boundary sites is given by 

1 
1 n In M,(A, 6) = S ( a )  (15) 

and hence we can evaluate the number of possible clusters contained within the 
defining volume of a hypercube and having n sites and b defining boundary sites as 

1 
-In n Mc(n, b)  = S(a’)  (16) 

where 
b a’ = -- S,a 
n 

and 6,a is a small increase in the value of a to a’ caused by the new boundary sites at 
the surface of the hypercube where there were full infinite cluster sites in adjoining 
hypercubes previously. 

Let us now generalise equation (16). If some other shapes of cluster containing n 
sites and b boundary sites were taken from the infinite cluster one would expect its 
multiplicity to be given by an analogous equation 

1 
- n In Ms(n, b )  = S(a  -&a) .  (18) 

Equation (18) is proposed for a <a,  and S(a)  given by equation (2). Since equation 
(2) gives S(a)  as an increasing function of a it is clear that the maximum value of 
In Ms(n, b)  will be gained by taking a shape which minimises the small increase in &a. 
Such shapes must obviously minimise the hypersurface area to hypervolume ratio and 
are hyperspheres. 

To evaluate this completely it is necessary to perturb suitably about the minimum 
6,a and to sum over all such perturbations to include all possible external shapes of 
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finite cluster. For sufficiently large n the dominance of the hyperspheres gives rise to 
the following results: 

sn(a)=-lnM(n, b)lb/n=o 
1 
n 

- ( l + a ) l n ( l + a ) - a  lnn-n-"dA(a,d)ln(-) l + a  
U 

where A(a, d )  is only a function of the ratio a, the lattice dimensionality d and nor of 
n ; it is approximately given by its values for a hypersphere for which 

where s d  is the surface area of a hypersphere of unit radius in d dimensions, p(FJ is 
defined as before and f is the fraction of 'created boundary sites' caused by cutting the 
infinite cluster at a given value of p :  both depend on a and d. We understand that the 
n relationship has recently been derived independently (Kunz, Stauff er preprints). 

As the critical point a, is approached, singularities in A(a, d )  will take effect on 
account of the singular behaviour of both p(F,) and f, and these will contribute to the 
critical exponents. 

The fact that & ( a )  tends to a well defined limit which is the corresponding 
quantity for the infinite cluster may be used to provide a simple analytic proof of the 
main results of this paper. Consider the probability P(n, b )  that any site be a member 
of an (n, b )  cluster 

- 1 l d  

P(n, b ) = M ( n ,  b )p"( l  - p ) b .  (21) 

In P(n, a )  = n[S,(a)+ln p + a  ln(1 - p ) ] .  (22) 

S,(U)=Z -1np-a In (1-p); (23) 

Taking logarithms and keeping b/n  fixed and equal to a, we have 

But In P(n, a )  must be 0 or less for all n ; hence we have the inequality 

or taking the maximum value of the right-hand side as a function of p yields equation 
(4) and 

(24) S , ( a ) s ( l + a )  ln(1 + a ) - a  In a. 

s , (a)=S(a)-n-"fL(a)  

Let us suppose for example that 

where f~(a) is some lattice-dependent function. We know that for a < a, an infinite 
cluster occurs with finite probability p(F,). Hence the limit 

lim lnP(n, a ) =  lim {n[S(a)+lnp+a ln(l-p)]-n1-"fL(a)) 
n-wn n-cc 

is strictly divergent but yields equations (2) and (4) as necessary conditions for any 
class of infinite cluster to be realised by random occupation of any lattice of finite 
dimensionality. Therefore S(a)C (1 + a )  ln(1 + a ) - a  In a when a >a,  for which 
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values of a infinite clusters do not occur spontaneously. Hence we suggest that at 
a = a,, S ( a )  is not analytic, and that S(a)  consists of two parts: 

(i) (a < a,) for which S ( a )  is given by equation (2); 
(ii) (a > a,) for which S ( a )  is a lattice-dependent function. 
If S ( a )  could be evaluated exactly on a particular lattice for a > a,  the value of a,  

(and hence of p , )  would become known. Preliminary work indicates that for a >a, ,  
dS/da ZG 0 and that S(a,) = max S(a),  whilst the non-analyticity of S(a,) is caused by a 
discontinuity in dS/da. If this is true, then S(a,)  is indeed precisely the value A which 
controls the maximum possible number of clusters for given n as n becomes infinite- 
a very elegant result previously suggested by Domb (1976). 

The results in this paper came intuitively whilst participating in the AEGTC at MERU 
in 1977. I should like to express my great gratitude to Maharishi Mahesh Yogi and 
the faculty of MERU for making this programme and its profound results available to 
me. 

I should like to thank Professor H E Stanley for bringing the problem of percola- 
tion to my attention. Finally I am deeply indebted to Professor C Domb for his kind 
comments and criticisms of earlier versions of this work and I am particularly grateful 
to him for his warmth and encouragement. 
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